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Abstract  
Using condition monitoring to track machine 

health and trigger maintenance actions is a 

proven best practice. By monitoring machinery 

health, costly failures are avoided and downtime 

due to outages is reduced, which finally results in 

an increase of operational efficiency and 

productivity of the equipment. Many papers 

discuss the implementation of condition 

monitoring to prevent failures and optimize 

maintenance actions. However, much less 

attention is paid to the use of condition monitoring 

information in order to optimize production 

capacity of a machine or a plant. Therefore, the 

objective of this paper is to establish the link 

between condition monitoring information and 

production capacity optimization by continuously 

adjusting production parameters (e.g. production 

speed) according to the measured condition 

monitoring information. In this paper condition 

monitoring of steel production machines using 

cost-effective temperature sensors is applied to 

monitor possible overheating of the machine and 

used to optimize the machine’s speed. Without 

optimization, the machine is simply stopped when 

overheating is detected. This results on lost 

production capacity. Therefore, the condition 

monitoring information is used as an input to the 

machine’s controller in order to optimize the 

production speed. The speed of the production 

machine is namely directly related to the 

corresponding temperature increase or decrease. 

Optimization of the production speed results in 

maximal production capacity and minimal 

machine downtime by prevention of overheating. 

The paper clearly illustrates how temperature 

condition monitoring information can be used to 

maximize industrial production capacity. This 

approach extends the use of condition monitoring 

information from purely avoiding unexpected 

failures to productivity optimization of an entire 

system. 

1. Introduction 

Maintenance optimization has been subject of 

different papers in the last two decade (Blair, et al 

2001; Mobley, 1990; Goh, et al 2006; Sholom, et 

al. 1998). From this literature, it is often found that 

this optimization is associated to Predictive 

Maintenance (PdM) where the health of the 

machine is continuously monitored via a Condition 

Monitoring (CM) system and the optimal 

maintenance is scheduled when a specific 

threshold is crossed. This simplified version of 

maintenance optimization is valid when enough 

history data is available both with sensors 

recording the state of the machine and the 

maintenance logs which teach us the behaviour of 

the machines after a maintenance action is done. 

In line with this version, examples where PdM 

policy has been successfully applied to industrial 

cases were published in (Bey-Temsamani, et al 

2009). In this work, data mining techniques 

following CRISP-DM standard (Shearer, et al 

2000) were combined with a prediction algorithm 

based on weighted mean slopes to develop a 

PdM policy for copiers / printers industry with an 

estimated benefit of €4.8 million per year 

worldwide. Such a clear benefit was only possible 

to estimate thanks to the available sensors and 

maintenance databases which are necessary 

required to develop the PdM solutions. However, 

in most industries it has been observed that often 

sensors data are available but not the 

maintenance logs history. This may be explained 

by the large efforts needed to collect such data. 

Furthermore, the quality of the sensors data is not 

always high. A customized solution is then 

needed to develop an optimized maintenance 

policy based on the available data in the industry 
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of interest. Therefore, the POM-CBM framework 

has been developed in conformity with ISO-13374 

CBM standard (Sheppard, et al 2008). This 

framework is composed of modular blocks that 

are selected depending on the final goal of 

maintenance optimization analysis. This 

framework is introduced and explained in (Bey-

Temsamani, et al 2011). In the POM-CBM 

framework, maintenance optimization is more 

largely described than through Predictive 

Maintenance (PdM) policy. Actually, after 

interviews with different machine builders in 

Belgium for maintenance optimization 

requirements capturing, it has been clearly 

concluded that maintenance optimization should 

not only take into account the health of the 

machines but should also include final product 

quality and production capacity as optimization 

parameters. Results of analyses related to 

maintenance cost versus product quality 

optimization were published in (Van Horenbeek, 

et al 2011). While industrial production capacity 

optimization is the topic we want to discuss in the 

current publication.  This publication fits in the 

framework of Prognostics for Optimal 

Maintenance (POM2) project (POM2 website, 

2011).The overall goal of the project is to develop 

integrated methodology for implementing 

predictive maintenance on industrial machines 

and software tools / algorithms to support the 

assessment of cost / benefits ratio of the 

predictive maintenance. This paper is structured 

as following. In Section 2, advantages of online 

condition monitoring for machines is illustrated. In 

Section 3, the approach followed to optimize 

production capacity is explained. In Section 4, 

validation on an industrial use case is given. 

Conclusions and next steps are summarized in 

Section 6.  

2. Online condition monitoring 

With the continuous decline of sensors prices, 

thanks mainly to the automotive industry, online 

Condition Monitoring (CM) programs are 

becoming possible in machine manufacturing 

industry. These programs consist on monitoring 

the condition of machines in order to assess their 

performance and take necessary actions when 

needed. As a consequence, the way companies 

manage maintenance has drastically changed 

thanks to such programs. Therefore, Condition 

Based Maintenance (CBM) and Predictive 

Maintenance (PdM) policies became practically 

possible once a Condition Monitoring program is 

adopted. A typical use case to show these 

advantages is a catastrophic failure of a steel wire 

production machine due to bearings failures 

(Techniline article, 2011). The most common 

bearing rating factors are speed and load. Of the 

two, load has by far the greater effect on bearing 

life. For example, speed and life are inversely 

proportional. Doubling the speed of a ball bearing 

halves its life, while, reducing speed by one-half 

doubles its life. However, doubling the load on a 

ball bearing reduces its life by a factor of 8 to 10. 

The detrimental effects of load on life are even 

more dramatic with roller bearings. One of the 

consequences of excessive speed is broken 

cages and retainers. High speeds increase inertial 

forces within the bearing. These forces, combined 

with inadequate lubrication and sudden stopping 

or starting, can produce high forces between 

rolling elements and the retainer. Repeated forces 

skew and eventually crack the cage or retainer. 

The catastrophic failure can be very sudden and 

impossible to predict using an intermittent 

condition monitoring system. Another problem 

hampering such a prediction could be due to the 

stochastic nature of vibration signals in production 

process, due to other vibration sources, and which 

make the optimal choice of the time to measure 

with an intermittent CM system very crucial. A 

continuous monitoring system, however, allows a 

continuous tracking of bearings conditions and is 

able, with the right features in place, to anticipate 

such failures in advance allowing thus the service 

people to take actions on the right time and 

optimize availability of the machines. The feature 

monitoring the condition of the bearing is shown in 

graph 1 using raw data (circles) and smoothed 

data using a moving average of 10 hours (solid 

line). Initially the vibration level was quite low and 

considered as a good state of the bearing. 

Incipient degradation start evolving slowly 

afterwards till around 600 hours after 

measurement start, where an abrupt change was 

recorded. Recording this change with an 

intermittent CM system would depend on the time 

you choose for measuring. If unluckily this 

measurement took place when the raw data 

amplitude is low, this abrupt change will not be 

recorded. The continuous monitoring system 

helps also to observe the behaviour of the 

machine, allowing thus some insight to 

understand it. For instance, after this abrupt 

increase in vibration, a decrease of amplitude was 

also recorded right after 700 hours followed by a 

second increase around 800 hours and then a 

catastrophic failure around 950 hours. These 

sequences records are certainly good inputs for 

machine builders to better understand the 

behaviour of their machines and use this 

information to discuss improvement with their 
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suppliers. Another even cheaper condition 

monitoring system to track some bearing failures 

is based on temperature sensors. Initial results 

showed clearly the feasibility of such a monitoring. 

The results of this study will be published later. 

These results showed that the cage failure 

illustrated in graph 1 could also be predicted using 

cheap temperature sensors a couple of weeks in 

advance. Therefore temperature condition 

monitoring is a cheap and a robust condition 

monitoring system for industry with much more 

advantages compared to accelerometers, for 

instance, the easy way to get the data directly via 

machine’s controllers. 

 

 
 

Graph 1 online condition monitoring example for a bearing in an industrial machine 

 

3. Production capacity optimization 

approach 

Different measures of productivity exist in the 

available literature. The overall equipment 

effectiveness (OEE) concept has been widely 

used as a quantitative tool essential for 

measurement of productivity (Muchiri, et al 2008). 

The OEE measurement tool evolved from the total 

productive maintenance (TPM) concept 

introduced by (Nakajima, 1988) and is defined as 

a measure of total equipment performance, that 

is, the degree to which the equipment is doing 

what it is supposed to do (Muchiri, et al 2008). It is 

a three part analysis tool in order to determine 

equipment performance based on its availability, 

performance and quality rate of the output. It is 

used to identify the related equipment losses for 

the purpose of improving and optimizing the total 

productivity and performance of the considered 

system. Six major categories of losses are 

identified within the OEE concept; these are 

depicted in Graph 2 and can be summarized as 

follows (Muchiri, et al 2008): 

 Breakdown losses categorized as time 

losses and quantity losses caused by 

equipment failure or breakdown. 

 Set-up losses occur when production is 

changing over from one item to another. 

 Idling and minor stoppage losses occur 

when production is interrupted by 

temporary malfunction or when a machine 

is idling. 

 Reduced speed losses refer to the 

difference between equipment design 

speed and actual operating speed. 

 Quality defects and rework  are losses in 

quality caused by malfunctioning 

production equipment. 

 Reduced yield during start-up are yield 

losses due to machine start-up. 

 

By considering the six major losses defined in 

OEE an optimal performance of the process can 

be achieved by monitoring and corresponding 

optimization of process and system parameters. 

This can be done by defining an efficient 

maintenance schedule, a good output (product) 

quality and an optimal production speed. Many 

papers on optimal maintenance scheduling exist 

in literature (Van Horenbeek, et al 2010). 

Furthermore, previous research has been done on 

optimizing maintenance with regard to output 

quality (Van Horenbeek, et al 2011). Therefore, in 

the remainder of this paper we will focus on 
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production speed optimization (i.e. in order to 

maximize production capacity) through process 

monitoring. 

  

 

 
Graph 2 OEE concept for performance 

measurement 

4. Validation on an industrial case 
study 

The case study analysed in this paper 

corresponds to wire processing industry. The 

ultimate goal would be to clearly illustrate how 

temperature condition monitoring information can 

be used to maximize industrial production 

capacity. This approach extends the use of 

condition monitoring information from purely 

avoiding unexpected failures to productivity 

optimization of an entire system.  

 
4.1 Problem formulation 

In the wire processing industry, production cycles 

are repeated in order to produce a product. During 

these cycles the temperature and the speed of the 

machines are recorded. The temperature sensors 

are monitoring possible overheating of the 

machine and will be used in this paper to optimize 

the machine’s speed. Without optimization, the 

machine is simply stopped when overheating is 

detected. This results in lost production capacity. 

Therefore, we will illustrate how the condition 

monitoring information can be used as an input to 

the machine’s controller in order to optimize the 

production speed. The speed of the production 

machine is namely directly related to the 

corresponding temperature increase or decrease. 

Optimization of the production speed results in 

maximal production capacity and minimal 

machine downtime by prevention of overheating. 

The problem is schematically depicted in graph 3. 

 

Runs history
Optimize process parameters 

of current / future runs

  
Graph 3 production speed optimization by 

avoiding machine’s overheating 

 

The information about speed and temperature 

gathered in previous runs would be used to 

propose an optimal production speed for current 

and potentially future runs. The machine health is 

supposed in this scenario to be within the safe 

band as the temperature should not exceed a 

fixed value or threshold corresponding to 

machines overheating. However, the technique 

could be extended to take into account the 

dynamic change of machine’s health by simply 

changing the fixed threshold to a varying function 

versus time which describes the health 

degradation if this is known. In order to solve the 

problem described in this section, a model of the 

temperature versus the production speed is 

needed. This is explained in section 4.2. 

 
4.2 Temperature – speed model 

After an extensive data cleansing and preparation 

by removing all kind of outliers and dividing 

properly the data into subsets corresponding to 

different runs, a physics-based parametric model 

has been developed to model the machine’s 

temperature versus the production speed. It was 

estimated under the nonlinear mixed effects 

framework that allowed describing the run-to-run 

variability in the data (Davidian and Giltinan, 

1995). Parameters were estimated using 

Restricted Maximum Likelihood (REML). The 

results showing the modelled temperature versus 

the measured ones are shown in graph 4. 
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Graph 4 modelled versus measured temperature 

 

The model describes quite accurately the 

temperature from the speed data with a coefficient 

of determination R
2
=0.9815. 

 
4.3 Production speed optimization 

The production speed optimization consists of 

proposing a production speed where the machine 

will run the current and future cycles without the 

risk of overheating. If the temperature at the start 

of the cycle and the needed time to finish the 

current cycle are known, which is valid for the 

current case study, then the optimal speed can be 

derived and proposed to the machine’s users / 

controller. Graph 5 is showing different possible 

speeds depending on temperature at the start of 

the cycle and the time to finish the cycle. For 

example, if the temperature at the start of the 

cycle is ~42
o
C and the needed time to finish the 

cycle is < 0.01 time unit, then the machine may 

almost run at the higher allowed speed. 

 
Graph 5  possible speed values versus temperature at start of the cycle and the  

time to finish the production cycle  

 

Simulation based optimization of the running 

speed based on recorded process data was done 

to illustrate the benefit of doing such an 

optimization with regards to the current way of 

working. The results are shown in graph 6. Here 

“Temperature” is defined as the measured 

temperature within the current way of working. 

Two major possibilities for optimization are 

considered, which are defined as single run and 

multiple runs optimization. In single run 
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optimization, the optimal speed is defined for only 

the next run based on the current temperature at 

the start of the run. After each run the temperature 

and corresponding optimal speed is updated (this 

can also be seen in graph 6). In multiple runs 

optimization the optimal speed is determined for 

multiple runs at once (i.e. the speed remains 

constant throughout these runs). The results are 

shown in graph 6. The machine that uses an 

optimization of the speed would finish sooner the 

production compared to the machine that does not  

use the optimization technique (i.e. current way of 

operation). Possibility to optimize the machine’s 

speed for more than one future run is possible 

with still some gain compared to a machine with 

no optimization. However, the gain from a single 

run optimization is bigger compared to multiple 

run optimization because of the continuous 

updating of the monitored temperature and the 

corresponding speed. This simulation shows a 

high potential of production maximization which 

needs to be validated in a real plant. 
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Graph 6  simulation of production with and without speed optimization technique 

 

5. Acronyms 

Predictive Maintenance (PdM) 

Condition Monitoring (CM) 

Condition-Based Maintenance (CBM) 

CRoss Industry Standard Process for Data Mining 

(CRISP-DM) 

Prognostics for Optimal Maintenance (POM) 

Overall Equipment Effectiveness (OEE) 

6. Conclusions 

Industrial production capacity optimization using 

temperature monitoring was presented in this 

paper with application to wire process industry. 

The online condition monitoring benefit of 

industrial machines was illustrated. Online 

monitoring using temperature sensor has a high 

use potential in industry. The sensor itself is very 

cheap and data collection / processing might be 

done directly with the machine’s controllers / 

PLCs. This collected temperature data could be 

deployed in an optimal way instead of the 

traditional way of using it by implementing basic 

temperature protections. An example of wire 

process industry was used to show how such an 

optimization approach can be practically applied. 

Simulations based on real process data showed 

the capacity benefit (here is the time to finish 

production of a machine with and without 

optimization technique). Next steps will be to 

validate these simulations in a real production 

plant. This approach could be adapted and 

applied to any production machine / process and 

allows thus an optimal way to run production 

without causing machines downtime. 
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