Prediction of remaining useful lifetime of industrial machinery	
POM	
-expert knowledge inspired feature generation -forecasting of vibration signals for early fault detection	
Beau Piccart, Wannes Meert	
INNOVATING TO GETHER FOR SUPERING ACLINES DTAJ RESEARCH GROUP	

Prediction of remaining useful lifetime of industrial machinery

- Use case description
- The Data
- Volume vs Quality
- Pre-processing
 - Peaks analyses
 - Low-pass filtering
 - Trend separation
- SAX representation
- Feature generation
- Handling large datasets: HDF5
- Learning a predictive model (Machine Learning)
- Evaluation

Predicting -	future
vibration of a c	centrifuge
 Normal wear and dirt build-up cause the machine to vibrate 	
Slow process	
Our goal: predict the future long-te of vibration levels	rm evolution
Not: model process parameters	dependency
Data driven approach	Predict when this machine
Model machine degradation	

The Data	

Data Volume

- Timespan: 2008 2012
- asynchronous and different sample-rates
- 53k to 5671k values per signal
- Original data delivered in .csv files
- 156 files: one file per signal, per year.
- 1.51Gb in total

We have **"Big Data"** but how can we extract useful knowledge?

Data Quality	
Data Quality	
Volume does not equal quality	
 event logs are very noisy and incomplete timestamps are imprecise, not always recorded, start 	
and stop is logged and can cover a huge timeframe (months), unclear event labelling (bullet this)	
 Continuous signal are not synced, different sample rates, contain spikes of unknown origin 	
Data requires <u>pre-processing</u> in order to extract <u>useful</u> information	

Data Quality Analysis Correlation Matrix	
 e. No correlation e.a e.4 High negative correlation 	
 Lots of redundant information Vibration is slightly correlated (~0.5) with the other signals 	LEUVEN

FMTC

Bi-gram: visual representation of transition probabilities

KU LEUVEN

Expert knowledge

- We filter peaks out
 - long term vibration trend remains
- vibration is a manifestation of slowly evolving degradation process
- There might still be some information in the peaks:
- e.g. degradation causes more peaks +----
- Add feature: % of peaks over a time interval (1 day)
- Add feature: Variation of the signal over a time interval

Signal synchronisation and representation

- Signals are out of sync and have different sample rates
- Necessary to <u>resample</u> the signal
- High sample-rate causes huge feature vectors
- high input dimensionality, noisy values, overfitting
- under-sample, smooth the signal
- Signals lie in different ranges:
- RPM [0-500], Vibration [0-10]
- map values to same domain (SAX)

Symbolic Aggregate	
approximation, SAX	
Original signal Piecewise Aggregate Approximation Symbolic Aggregate approximation	
a Bistribution of the data	
THE	

Rotations since (cleaning	
	catalyst	

HDF5

- Hierarchical Data Format
- High performance data-format
- Bindings for C/C++/Java/Python/Matlab/Fortran...
- Parsing the csv files to time-series objects takes 10minutes = very slow
- Parsed time-series stored in an HDF store
- Loading the data from the HDF store is nearly instantaneous (limited by disk-speed)
- load time from 10min to <1sec
- 60% file-size reduction from 1.51GB to 392MB

Predictive Modelling

Learning Task

- Input: Variables of the SAX signals with history of 5
 days
- Output: Predicted vibration in 10 days
- Model: Random Forest
- Can deal with multiple input streams
- Can deal with continuous variables
- Easy to implement in production
- Robust against non-informative features
 (automatic feature selection)

tt.	Feature importances	
most importan	Gini importance: SOI L-0 0.195311104193 Rotations since cleaning 0.112010866806 /AMP 0.0917042876089	
mong the r	/timeSincePreviousWash 0.0811065546714 Steps since /washes 0.0596259232877 Time running 0.0470618151919 /timeSinceLastCleaning 0.0423450348312 /BASEOUTPC 0.0388930896939	
tures are a	Steps since /cleaning 0.0359048247202 /SEALWATP12 0.0280585396855 /BEARING1FI 0.0249685671137 /Analyzer_LLO_PDD2 0.0193464457647	
ated fea	Peakfregs	
gener	/SEALWATP11	

Conclusions

- Lots of data doesn't equal good data
- Preprocessing is important
- Expert knowledge helps design informative features
- We can't model what we haven't seen before
- Models need to be updated regularly

